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Microstructural response of a near-critical colloid-polymer mixture to shear flow
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Long-ranged microstructural order of a near-critical colloid-polymer mixture under stationary and oscillatory
shear flow is studied by means of time-resolved small-angle light scattering. The distance from the critical
point, the shear rate, and the frequency of oscillation are systematically varied. Unexpected shear-induced
distortions of critical microstructural order is observed in directions perpendicular to the flow direction, more
so on closer approach of the gas-liquid critical point. The measured distortion of long-ranged order can be
guantitatively understood on the basis of an approximate solution of the Smoluchowski equation, provided that
a nonanalytical distortion of short-ranged microstructural order is assumed. These short-ranged microstructural
changes, induced by the flow, account for the observed distortion perpendicular to the flow direction, and are
responsible for the shear-induced shift of the location of the gas-liquid critical point. The importance of
short-ranged correlations renders the behavior of critical systems under shear flow nonuniversal. The origin of
the nonanalytic dependence of short-ranged distortions on the shear rate remains unclear. Including these
short-ranged microstructural distortions, we find a good agreement between theory and experiment for both
stationary and oscillatory shear flow.
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[. INTRODUCTION Nonlinear response to either stationary or oscillatory flow is
) ) ) therefore expected to occur at very low shear rates. The out-
The effect of external fields, shear flow in particular, onof-phase response of microstructural order to oscillatory
the phase behavior of colloidal systems has been of increasiow, responsible for the viscoelastic behavior of near-critical
ing interest during recent yeatsee citationg1-3] for re-  suspensions, occurs at relatively low frequencies.
views). Of special interest are colloidal systems since these The effect of shear on near-critical systems has been stud-
are experimentally more easily accessible as compared fed for binary fluids[20,2]], polymer blend§22-24, and
molecular systems because of the much larger time angolymer[25-27 and micellar solution$28]. In the present
length scales involved. Moreover, the intercolloidal particlepaper we investigate, both theoretically and experimentally,
potential can be varied from steeply attractive to long-rangedhe response of a near-critical colloid-polymer mixture to
repulsive, leading to very different types of phase transitionstationary and oscillatory shear flow. Thus we pursue the line
and nonequilibrium states like gels and aggregates. Sever&t by earlier scattering experiments on critical dispersions of
experimenta' techniques have been deve'oped to Study t}'ﬂ.;tracuve CO”0|d52 ll.lnder Shear. Hay|ng estab“shed.the
flow behavior of both the macroscopic and microscopic“”k between 'the experimentally determlr]ed and theo.retlcally
structurein situ. Aggregation of attractive spheres was stud-Calculated microstructure, one can continue to predict rheo-

ied by confocal microscop], two-dimensional video mi- 109ical behavior[18], since it has been shown that shear-
croscopy [5], and light scattering[6]. Crystallization of induced distortions of the critical structure factor of such

charge or sterically stabilized spheres was studied by meargjéspersmns are the origin of near-critical viscoelastic behav-

) . - jor [30].
of rheology combined with small-angle neutron scattering 'I[he] effect of shear flow on macroscopic properties is of-
[7] or small-angle x-ray scatterin@], respectively.

Where the effect of shear flow on gelation, aggregationten described on the basis of thermodynanjibé—16,34.

L : : However, in principle no Hamiltonian or free energy can be
crystallization, and also spinodal decompositiSe1§ has defined for a sheared system, which has been nicely demon-

been studied extensively, relatively little is known about the

. 9XF7 T =strated by simulations on nucleation of crystals under shear
eff_ect qf shear flow on systems close to t_he gas-hqwd C”t'caFBQ. The response of colloidal dispersions to shear flow
point, just before spinodal decomposition sets in. On ap

e . A . must therefore be studied on the basis of kinetic equations,
proach of the gas-liquid critical point, interactions become

o . oo .-e.g., the Smoluchowski equation, which is an equation of
very long ranged. In addition, the grad!ent diffusion coeffi- n\qtion for the probability density function of the position
cient tends to zero so that the dynamics of the system Seq,q inates of the colloidal particles. In addition, for near-
verely slows down, often referred to as critical slowing cyisica| systemsnonlinearresponse should be described by
down. Due to the long-ranged spatial correlations and theifyeqy dince the long-ranged structures and slow dynamics
very sloy\( dy”a'.“'c.s’ the m|cro.s_tructural order near the 98mits linear response to only very small shear rates. There
liquid critical point is very sensitive to shear floi,17-19. are a few theoretical approaches for microstructural order

under flow for simple fluid$36—4Q. Here we shall consider
a theory that applies to near-critical dispersions of colloidal
*Present address: Department of Physics, North Dakota Statgpheres, that has been developed by one of the authors

University, Fargo, North Dakota, USA. (J.K.G.D) [32,4]. In this theory, it is assumed that the
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shear-induced distortions of short-ranged microstructural or- The flow that will be considered here is a laminar flow
der can be neglected. That is, it is assumed that the paiwith spatially uniform shear ratg. The flow velocityu is
correlation function for small separations between colloidalchosen as
particles (at most equal to the range of the bare pair-
interaction potentialis not affected by shear flow for the u=yI-r, (1)
small shear rates that are needed to perturb critical long- R

ranged structure. As will turn out in the present study, how-where the normalized velocity gradient tengbis equal to
ever, this neglect is not justified, and data can be interpreted

on the basis of this theory only if it is extended to include (o110
such short-ranged distortions. It has been shown before that =0 0 0. (2)
these short-ranged distortions are responsible for the shear- 000

induced shift of the gas-liquid critical poif#2]. Hence, very
close to the critical point, a small shift is already sufficient toThis is a flow in thex direction, with its gradient in thg

substantially affect long-ranged order. What is needed in thiglirection, while thez direction is the vorticity direction. In

extension to explain the experimental data is a leading ordefase of stationary shear flow, the shear rats a constant,

isotropic distortion that is proportional to the absolute valuewhile for oscillatory shear flow,

of the shear rate. If one assumes that the pair-correlation

function for small separations between colloidal particles is V=7, codwt}, (3

an analytic function of the shear rate, for symmetry reasons, ) o

the leading order isotropic correction should vary like theWherew is the frequency of oscillation. )

shear rate squared. The nonanalytic behavior that is found in The starting point for the derivation of an equation of

the present study is therefore unexpected and remains uneiotion for the pair-correlation function is the Smoluchowski

plained. A direct verification of the nonanalytic shear-rate€duation. This is the equation of motion for the probability

dependence of the location of the critical point has not yeflénsity functionP=P(ry,...,ry,t) of the position coordi-

been undertaken. natesrj, j=1,... N, of the N spherical macromolecules in
Here we performin situ time-resolved small-angle light the system under consideration. With the neglect of hydro-

scattering measurements in the velocity-vorticity plane orflynamic interactions, the Smoluchowski equation reads

near-critical colloid-polymer mixtures, systematically vary- [45—41

ing the shear rate under stationary flow and the frequency 5 N N

and strain amplitude under oscillatory flow. The system that P _ . -

is used consists of colloidal hard spheres, where a depletion gt DOJ.% Vi [ViP+pPV; @] 721 Vi-[Pr-1y].

attraction is induced by adding polymer to the solvent

[43,44. At sufficiently high concentrations of polymer, a (4)

gals—hqmd phase sepa;jattl)on rc])ccurs. ':'hg d'TtanCﬁ' tc; t?}e CMiaere, D, is the Einstein diffusion coefficient for a single,
cal point, as measured by the correlation length of the unfloninteracting macromoleculd; is the gradient with re-

sheared, quiescent system, can easily be tuned and the Crié'pect tor;, B=1/ksT (ks is the Boltzmann constant arfdis
he temperatupe and @ is the total potential energy of the

cal structure factor is accessible with small-angle light;
scattering(30,33. assembly ofN macromoleculegaveraged over the phase

We shall first discuss in Sec. Il the theoretical predlctlon_spt,jme coordinates of the solvent moleculds equation of
for the shear-rate and frequency dependence of the Ornsteérﬂ

Zernik p it th | ¢ oh ind jotion for the pair-correlation functiog can be found by
ernike structure factor, with the neglect of shear-induceqyieqation, since for homogeneous systems with number
short-ranged distortions. It is then shown why the shear-ral

Bensityp, by definition
dependence of the pair-correlation function for short dis- Yo by '

tances becomes important on approach to the critical point. p?
The theory is extended in Sec. Il to include these short-  Pa(ry,rot) = N—zg(fl—fz,t)
ranged distortions. Experimental data are then presented in
Sec. IV, which are compared to both the older version of the :
theory and the extended theory. The paper concludes with a = | drgeee | dryP(ryrars, .orwt), (9
summary and conclusions.
whereP, is the two-particle probability density function. As-

suming a pairwise additive interaction potential, that is,
Il. THEORETICAL PREDICTION WITHOUT

DISTORTIONS OF SHORT-RANGED CORRELATIONS N
= V(ri=ry), (6)

In this section, an existing theoif{32,41 on the shear- =]
induced distortion of the Ornstein-Zernike structure factor

will be briefly reviewed. One of the assumptions involved inwhereV is the bare pair-interaction potential, integration of
deriving an explicit expression for the structure factor is in-the Smoluchowski equatio#) leads to(with r=r,-r, the
correct on close approach to the critical point, and will bedistance between two particles aNdthe gradient operator

reconsidered in the subsequent section. with respect tar)
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ag(r,t) density p. This “improved superposition approximation”

———==2D V -[Vg(r,t) + Bg(r ,t{VV(r) - F"(r,1)}] leads to the corregimean field typg divergence of the cor-
relation length on approach to the critical point.
-yV [g(r,t)f r]. (7) (i) The third approximation concerns the neglect of

) ) . _shear-induced distortions of short-ranged correlations. First
Here, the force between two particles that is mediated Vigygtice that in Eq(8) we need onlyg(r’ =r,—rs,t) from the

other particles, the “indirect force,” is given liwith V' the  ¢j5qyre in Eq.(11) for distances between particles 1 and 3

gradient operator with respect t6=r;-ry), smaller than the rang®, of the pair-interaction potential.
The reason for the neglect of the shear-rate dependence of

) r,r',t ) . ” .
Fnd(r 1) :—pf dr’[V’V(r’)]M, (8)  g(r’) is that long-ranged, slowly fluctuating critical micro-
9(r.0) structural order is distorted much more easily than short-
whereg; is the triplet correlation function, which is defined ranged, relatively fast fluctuating structural order. This can
as, similarly tog in Eq. (5), be quantified as follows. The distortion of correlations that

5 extend over distances of at md3} is measured by the so-
%gg(rl,rz,rg,t) Efdr4---fdrNP(r1,r2,r3,r4, . called bare Peclet number 2
Ry
9 pe 2Dy (12
The following steps are now made to obtain from Eg). a
closed equation of motion for the total-correlation function
h=g-1, the Fourier transform of which is essentially the
structure factor that is measured in a light scattering experi- Y&
ment: A= oDt
(i) Since the total-correlation functidm vanishes at infi-
nite separation between two particles, its asymptotic behawhereé is the correlation length of the unsheared, quiescent
ior at large distances is obtained by linearization of &). suspension, anB®" is an effective diffusion coefficient that
with respect tdh, as far as the long-ranged contributionshof describes the relaxation of long-wavelength density fluctua-
are concerned. It will be shown later that linearization istions (a precise definition will be given laterSince é>R,,
allowed only when the critical point is not approached veryand D¢f<D,, due to “critical slowing down,” the dressed
closely, and complies with a mean field approximation. Peclet number is usually very large for shear rates where the
(ii) The classic superposition approximation for the tripletbare Peclet number is still small. We shall therefore write
correlation function,

As will be shown later, the distortion of near-critical micro-
structural order is measured by the dressed Peclet number

(13

glr’' =ry—rgt)=g4r’) for r’' <Ry, (14)

whereg®?is the equilibrium pair-correlation function, that is,
(10 the correlation function of the quiescent, unsheared system.

is a very bad approximation close to the critical pdititis (iv)_Since the interest herg is in the_long-wavelength criti-
closure leads to a finite correlation length at the critical pointCal microstructure, convolution type integrals that are en-
[48,32. According to Eq(8) for the indirect force, a closure Ccountered can be gradient expanded up to leading order.
relation is needed only for distances<R,, with R, the An analysis of the equation of motiq) invoking these
range of the pair-interaction potential, while>R,. Hence, three approximations Iea_lds to thg following equation of mo-
the only configurations for which a closure relation is neededion for the total correlation function:

are those where the two particlesratandrg are in each ah(r 1)
other’s vicinity, while the third particle at, is far away from :
these two particles. The effect of the presence of the third a
particle is that it enhances the local density around the two — 5V [T -rh(r t 15
neighboring particles. This density enhancement is equal to AN (r.ol, (15
ph((ry+r3)/2-r,,t). The pair-correlation functiorg(r=r,  where

-r3,t) in the classical superposition approximatik0) is . )

now simply replaced py the pair-correlation function evalu- M=p"- 2_77p2J dr’r’3%r,)ge°(r’) (16)
ated at the local density[1+h((r,+r3)/2-r,,t)]. To lead- 3 0 dr

ing order inh we thus have

g3(rl1r21r31t) = g(rl - r31t)g(r3 - rZIt)g(rZ - rlat)y

=28D,V - [z_n Vh(r,t) =3 V V2(r,1)
p

is the osmotic pressure, and
Os(r 1,2, r3t) "

2 dv(r’ 1d ’
dg(rl_r31t) 2_—77pf dr’r’5ﬁ|:g(90(rr)+_p ge()(r ) (17)

o Ph((ri+ra)2 =y 157 dr’ 8" dp
p
_ _ is the Cahn-Hilliard square gradient coefficient. Fourier
XQ(rs=ra0grz=ry,0. (1D iransformation leads to the equation of motion for the struc-
The pair-correlation functions here comply with the numberture factor,

= g(rl_ r31t) +
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aS(k,1)
el

aS(k,b)
ok,

Yk = 2D°M(K Sk, b - S4K)],

(18)

wherek; is the jth component of the wave vectkr and S*
is the Ornstein-Zernike structure factor,

1 1

Se(’(k)=’8—2m,

(19

where¢ is the correlation length of the non sheared system,

(20)

dIl
e=x / B

PHYSICAL REVIEW E 70, 061405(2004)

IS(K)

ISK,7) _ _
- Ko

or

Ao CO8Q7iKy KA1 +K2)[SK) - S4K)],

(25

where the Peclet numbgp for oscillatory shear flow is simi-
larly defined as in Eq13) for stationary flow,

_ %#
(U 2Deff’ (26)
and wher&() is the Deborah number
wé
= opeft (27)

Equationg23) and(25) can be solved analyticallisee Refs.
[32] and[41]). Since more general equations of motion will

Furthermore, the wave-vector-dependent effective diffusiorbe solved in the next section, we shall not display these

coefficient is defined as
eff, — dH 2| — 2 2
D®"(k) = DyB r +3k | =DB2[E°+Kk]. (2D
p

SinceB dI1/dp— 0 on approach to the critical point, the cor-
relation length diverges as it should, whik¥f(k=0)—0,

results here.

Since in Egqs(23) and(25) the shear rate is always mul-
tiplied by K4, these equations predict that there is no effect of
shear flow in directions perpendicular to the flow direction.
As will be discussed later, this is not confirmed by experi-
ments. The experiments reveal large distortions also in direc-
tions perpendicular to the flow. The reason for this discrep-

implying that concentration fluctuations of long wavelength@ncy is discussed in the subsequent section.

become very slow, which is commonly referred to critical
slowing down.

The neglect of quadratic terms imin the equation of
motion (15) [approximation(i)] is only allowed when typical

values of h? at large distances are much smaller than

hg dIl/dp. This is violated very close to the critical point.
Linearization with respect tdv can thus be regarded as a
mean field approximation.

In order to quantify the response toscillatory) shear
flow, Eq. (18) is written in dimensionless form. To this end,
the dimensionless time and wave vector

2Deff

=t

3

K=k¢ (22
are introduced. Time is thus expressed in units of the tim
that a colloid takes to diffuse over a distance equal to th
correlation length, and the wave vector in units of the invers
correlation length. Fostationary shear flopthe equation of
motion (18) transforms to

IS(K
0 =i, S

_K2 2 _
K, KA1 +KI[SK) = S4K)],

(23
where \ is the dressed Peclet number defined in B)
with,

De'=D®'(k=0) = DyBEE?, (24)

where in the last equality E@21) has been used. Fascil-
latory shear flonfsee Eq(3)] it is found that

Note that the Peclet numbgt3) and the Deborah number
(27) can also be written as

__ _ of
h= 2DB3 Q= 2DB3 "

Hence, both andQ) are~&*, with the same proportionality
constant. This dependence on the correlation length can be
verified experimentally. The large values mfand () for
relatively small values ofy and w, respectively, quantifies
the large susceptibility of near-critical systems.

(28)

Ill. THE EXTENDED THEORY: THE ROLE OF
DISTORTIONS OF SHORT-RANGED CORRELATIONS

The approximatioriii ) discussed in the previous section
states that short-ranged correlations are relatively little af-
fected by flow as compared to long-ranged correlations. We

orward approximation is not correct, despite the fact that the

eclet numbergl2) and(13), which measure the distortion
of short- and long-ranged correlations, respectively, are or-
ders of magnitude different.

Instead of completely neglecting short-ranged distortions,
we shall keep leading order deviations from equilibrium
structure, that is, instead of E¢l4), we shall expand the
correlation function to first order in the bare Peclet number
as

;hall show in the present section that this seemingly straight-

=

gr',t) = ge"(r’){l +|Pefo(r’) - Pé)Tzlrfl(rl)}

forr’' <Ry, (29)

where(the superscripT stands for transposition
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_87 (*

e =2ip 4 i 1_d[g®{n)f
E=JIF+17) ) 1 dig™{) 1(r)]}

3dV_(r) e
drr ar {g°(r)f1(r)+2p &

is the symmetric part of the dimensionless velocity gradient (32)

tensor. Furthermore, the functiofgandf, describe the iso-  The dimensionless parametemeasures the susceptibility of

tropic and anisotropic responses of the short-ranged part @§otropic short-ranged distortions, amdof the anisotropic
the pair-correlation function to shear flow, respectively. Heredistortions.

P& is the bare Peclet number in §d2), wherey is either a The solution of Eq(31) reads
constant for stationary flow or given by E) for oscilla- .
tory flow. SK) = — f AX((K2 - K2+ X2)(1 + K2~ K2
Wheng for short distances is an analytic function of the AKy ¢ 2 2
shear rate, the leading order isotropic distortion is quadratic 2
in the Peclet number for symmetry reasons. That is, the iso- + X2)89°(\'Kf+xz+ K%) - aK  Xtexp{— F(K|X)/\K},
tropic contribution in Eq.(29) is absent when the short- (33)

ranged part ofg can be expanded in a converging power

series ofy. As we shall see later, we do need an isotropicwith

distortion that is linear in the shear rate to explain experi- 1

mental data. For symmetry reasons, such linear isotropic dig=(K |X) = (X - K,)(K? - K%)(l +e+K?- K%) +=(X3- Kg)
tortion can only be proportional to the absolute value of the 3

shear rate. This implies that the pair-correlation function for

1
short distances is a nonanalytic function of the shear rate. X(1+e+2K?- 2K§) +§(X5_ Kg) - aK (X% - KS).
The probable reason for this is as follows. In the equation of
motion for g, hydrodynamic interactions give rise to terms (39

proportional to integrals containing triplet and four-point
pair-correlation functions. These integrals extend over th
entire space, and thus probe the long-ranged behavigr of
Since close to the critical point these long-range correlation
are significant, it might be that these terms give rise to th

nonanalytic behavior ofj for small distances. This is how Without shear flow, s it should.

long-ranged correlations could give rise to a nonanalytic re- Contrary to the case where short-ranged distortions are
g-rang 9 y neglected, one now obtains a finite distortion in directions
sponse of short-ranged correlations.

perpendicular to the flow direction whek;=0. In these
directions, according to Eq31), the structure factor attains

The upper integration limit in Eq.33) is equal to + when
%K1>0 and equal to = whenAK;<0. For\ — 0, the func-
tion that multipliesS*™ in the above equation becomes a
Sfunction distribution inX, so thatS becomes equafk™

A. Stationary shear flow an Ornstein-Zernike-like form,
Repeating the analysis discussed in the previous section, 1 1 _
using EQq.(29) instead of assumptio(ii), Eq. (23) for sta- SK) = IE(geff)—er K2 (K1=0), (39

tionary shear flow is found to extend to
where the “effective,” shear-rate-dependent correlation

IS(K length is equal to
o:xKlﬂ—KZ(uH K2)S(K) + K3(1 + KA)SYK) -
K Ef=g1+e. (36)
+aKK[SK - 1)]. (31) The interpretation of this result is that the location of the

critical point is shifted on applying shear flow. The accom-
panied shear-induced change of the correlation length is thus
equal to(note thate>0)

There are two new parametesrand « which are defined as

IN(Ry€)?
- E ff_
2Dp% ° Ad_&-e 1o (37)
'3 3 Vli+e

This shear-induced decrease of the correlation length can be
w interpreted as being a consequence of a shear-induced shift
Fo= 4_77pf dr rsw 9eu(r)fo(r) + Efw , of the critical point. That the shear-induced displacement of
0 dr 2 dp the gas-liquid spinoddincluding the critical pointis indeed
related to shear distortion of short-ranged correlations has
been shown if42].

~ URy)?
2DyS 1 B. Oscillatory shear flow
Including short-ranged distortions, the equation of motion
with Eq. (25) for oscillatory shear flow extends to
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ISK, dSK,
K, =\ cogQ 7K, K,
T &Kz
- K?(1 +|ey cogQ 7} + KASKK, 7)
- K21 +KA)SYK) + agKK[S(K, 7) - 1],
(39
where the dimensionless numbegsand o are defined as
o= |-7o|(Rv§)2F
07 2Dy
Yo(RvE)?
=——2"Fy, 39
D5 (39)

whereF, andF; are given in Eq(32).
The solution of this equation of motion reads

SK, 7= f " 4G L + GA7)ISHG(7)

- ap o Q7 }G(7)Gy(7) texp{— H(7, )},
(40)
where

H(r,7) = f PG + e coS Q)| + GA()]

T

= ag o2 7)Gy(7")Gy(7)} (41)

and
No. . No.
G(7) = Kl,K2+aKlsln{QT}—aKlsln{QTl’},K3 .

(42)

In Eq. (40), G;(7') andG,(7’) are the first and second com-

ponents ofG(7') in Eq. (42), respectively. Note that in di-
rections perpendicular to the flow direction, whdfg=0,
this result reduces to

SK,7) =K1+ KZ)Seq(K)jT d7 exp-H(7,7)} (K;=0),
(43)
with

H(7,7) =K1 +K?)(r- 1)+ Kzf d7’|e; cog Q7).

T

(44)

PHYSICAL REVIEW E 70, 061405(2004)

dissolved in cyclohexane. These spheres behave as almost
perfect hard spheres. PolydimethylsiloxgRDMS, Jansen
with a molecular weight of 206 kg/mol and a radius of gy-
ration of 23 nm was added to induce depletion attractions
between the colloidal particles, giving rise to a gas-liquid
phase transition. The critical point of the dispersion was
found at a colloid volume fraction of 19% and a polymer
concentration of 6.5 mg/ml, by locating the point on the
binodal where, after phase separation, the volumes of the two
phases are equal. The distance to the critical point can be
tuned by gently evaporating from or adding solvent to a dis-
persion with the critical composition ratio of silica to poly-
mer. For more details see R¢#9].

Small-angle, time-resolved light scattering experiments
are performed using a home-built optical couette shear cell,
where the radius of the inner cylinder is 21 mm and with a
gap width of 2.47 mm. For oscillatory experiments, the inner
cylinder oscillates with angular amplitudes between 10° and
130°, while frequencies are varied from 0.025 to 0.1 Hz. The
shear cell is placed in a cylindrical toluene bath with the
second gap of the cell in the center of the bath. Scattered
light originating from the first gap is blocked by means of a
pinhole that is positioned within the hollow inner cylinder.
The inner cylinder is filled with toluene. A 5.0 mW He-Ne
laser (Melles-Griot) with a wavelength of 632.8 nm was
used as a light source. The laser beam is directed along the
gradient direction, so that the flow-vorticity plane is probed
in our experiments. The scattered intensity is projected on a
screen. A hole in the center of this screen prevents detection
of stray light from the laser beam. The size of this hole
corresponds to a scattering angular range 0-1.4° and a wave
vector range of 0—0.24m™%. Images of the screen were
taken in backscattering mode with a peltier cooled 12-bit
charge-coupled deviaggCD) camera, with 58X 782 pixels
(Princeton Instruments, microMAXThe maximum scatter-
ing angle was 7.7°, which corresponds to a wave vector of
1.3 um™. The deformation of the scattering pattern due to
the cylindrically shaped toluene bath was corrected for. A
Hameg HM8131-2 function generator was used to control
the oscillatory motion of the motor. The amplitude of the
oscillation was measured at the axis of the couette cell with
an angle recordeiTr WK-elektronik), which was connected to
a LeCroy oscilloscope. A measurement consists of a series of
128 or 256 imagesdepending on the period of oscillatipn
which were taken at time intervals between 0.25 and 0.5 s.
The start of a series of images was triggered by the Hameg
function generator, such that each set of images starts at an
instant of time where the shear rate is zero. For a typical
experiment ten of such time series were averaged. The ex-
periment was controlled by a home-writteABVIEW pro-
gram. A schematic overview of the setup is given in Fig. 1.

As for stationary shear flow, the structure factor deformation

in directions perpendicular to the flow direction is honzero
due to the effect of the flow on short-ranged correlations.

IV. EXPERIMENTS

A. System and light scattering setup

B. Relation between the scattered intensity
and the structure factor

The high turbidity of the near-critical samples must be
accounted for on relating measured intensities to the struc-
ture factor. The turbidity not only depends on the distance to

The system used in this study consists of colloidal silicathe critical point but is also a function of the shear rig8],
sphereq102 nm diametergrafted with stearyl alcohol and since it is related to the structure factor as
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FIG. 1. Schematic overview of the experimental setup for small-

angle light scattering undéoscillatory) shear flow.
FIG. 2. The equilibrium Ornstein-Zernike structure factor, cor-

o 2%, responding to a correlation length =650 nm. The thick lines
r= %f d¢f dk kP(K)S(K). (45) indicate typical cross sections that are used for data analysis of
sheared systems.

Here C, is an experimental constant determined by the vol-
ume and dielectric constant of the colloidal particleg) is
the form factor of the colloidal spherdsee[33]), and kg
=2x/\ is the wave vector of the incident light, with the

for equilibrium suspensions, which are used in the shear ex-
periments later on.

wavelength of the laser light within the dispersif29,45. D. Structure factor under stationary shear flow
The structure factor is related to the measured intensity as  \y\ie measured the shear-induced distortion of the structure
1(K) = 1K) factor for shear rates ranging frofn=0 to 33.5 s?, for cor-
SK) = + (46) relation lengths in the range of 300 to 1500 nm. Experimen-

tal data for the distortion

Here, the “susceptibility”A is the proportionality constant B

between experimental intensities and the structure factor. ASK) = _2{Seq(K)_Sy(K)} (48)

Furthermore|,,(K) is the background intensity, which is

the intensity as measured from the couette cell filled withare compared to the experimental predictions in E@8)

just solvent. The background intensliy arises from stray  and(34). Experimental data foAS will also be compared to

light and reading noise of the CCD camera. The turbiditythe theory where short-ranged distortions of the pair-

dependence of the susceptibililycan be accounted for ex- correlation function are not included. For convenience of

plicitly by writing it as data analysis we extract data from ten cross sections from

. . each scattering pattern: five cross sections at fixed values of

Al&,Y) = ComxArE NI} “n K, as functiong 2K3, and five cross sections at fixéd, as

with Ce,,: @an experimental constant that is independent ofunctions ofK;. These cross sections are indicated by the

the turbidity, and the optical path length, which is equal to thick lines in Fig. 2. In accordance with theory, the scattered

two times the gap width of the couette cell. The dependencintensity for cross sections is found to be invariant under

of the turbidity on the distance from the critical poimea-

sured by the correlation lengthwithout shear flowand the ' ' '

shear rate iy denoted here explicitly. The relation between ° &=640nm, © &=760nm,

the turbidity and the structure factor thus leaves a single z | éf:;ggm, * E=1150nm, a P

adjustable paramet€l,,to relate intensities to the structure S 51 .y nm o © Z o %

factor. ‘i . Z o ® 2
P o ° S <& @ * Z °
D 510 o © - Z N

C. The structure factor without shear flow 5 & 48 “ oot 2
An experimental equilibrium Ornstein-Zernike structure- = .XZZ e

factor is plotted in Fig. 2. The equilibrium correlation length A2°

¢ is obtained from this structure fact@after angular averag- . . . .

ing of the two-dimensional scattering patteriy an 0 1 2 3 4

Ornstein-Zernike fit, that is, a linear fit of $74k) vs k2. K> [um"“]

According to Eq.(19), the square root of the slope divided
by the intercept of such a plot gives the correlation length. FIG. 3. Ornstein-Zernike plots from which equilibrium correla-
The corresponding Ornstein-Zernike plots are given in Fig. 3ion lengths are determined, as indicated in the figure.
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0.8

10.6 FIG. 4. Typical fitting results
of the shear-induced distortion of
the structure factoASfor a corre-
lation length of 770 nm and three
shear rates: 33.55(A), 7.45 st
(0), and 2.3 8! (O). Points are
experimental data, solid lines are
fits to the theory where distortions
of short-ranged correlations are
neglected, while the dash-dotted,
dotted, and dashed lines are fits to
the theory with the inclusion of
shear-induced distortions of short-
ranged correlations. The values
for the wave vectors indicated in
the figures are the wave vectors
where cross sections are taken, as
indicated by the thick lines in Fig.
2. Note the difference in scale of
the vertical axis for the different
Cross sections.

104

coordinate inversion to within experimental error. This re- Figures 4 and 5 show the fit results for the equilibrium
sults in six independent scattering curves per scattering patorrelation lengths 700 and 1500 nm, respectively. The wave
tern, that is, for each correlation length and each shear ratgector is always expressed in dimensionless uritské,
These six scattering curves are fitted simultaneously for allvith k the physical wave vector. The finite distortion of the
correlation lengths and shear rates together to the theoreticsiructure factor in directions perpendicular to the flow direc-
predictions. There are only three shear-rate-independent fiton is most clearly seen in the top left corner plots in these
parameters\/vy, a/vy, ande/y. The effect of the turbidity, figures, which are cross sections whége0. As discussed
which also depends on these three parameters, was includadSec. I, when contributions from shear-induced distortions
in the fit, using Eq(45) to calculate the turbidity. The pref- of short-ranged correlations are neglected, theory predicts no
actor Ce,p in the integral in Eq(45) constitutes a fourth fit  effect of shear flow in directions wheig=0. Clearly, the
parameter, which is independent of both the shear rate arsffect of distortions of short-ranged correlations is essential
the equilibrium correlation length. Its value was found to beto explain our experimental data on shear-induced long-

equal toC,/k3=0.25. ranged correlations. Moreover, the extended theory, where
1.0

0.8} = Pl

K, =0 AN 0.8

i 4% ,

0.6 il 0.6
04| fo o . R
* vl T . 0.4

0.2F

0.0+

04f FIG. 5. Same as in Fig. 4, now
for a correlation length of

1500 nm and for the three shear
rates y=20.46 S (A), ¥

=1.84 st (0), and ¥=0.87 st

0.2r

0ot (0).
0.3}
0.2+
0.1
00 i 1 1 1 1 1
-3 -2 -1 0 1 2 3 3 2 -1 0 1 2 3
K3 K1
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FIG. 6. The parameteps/ v, a/ y, ande/ y obtained from the fit v

of the scattering data under stationary shear flow as functions of the
equilibrium correlation lengtl§. For the parametex/ y results from
oscillatory flow experiments are also shoyapen symbols which
will be discussed in the subsequent section.

FIG. 8. The minimum standard deviation from least squares fits
varying the exponenv, the shear-rate dependence of the short-
range distortione/ y*, for three different correlation lengths as in-
dicated in the figure. The error here is defined(ﬁu&;n)Ej(Yf"pt

. . . -Y"2 wheren is the number of data points involved in the fit,
short-ranged distortions are accounted for, describes the e)yex&)tis thejth experimental value for the structure factor, af}'dis

periments quantitatively correctly. In particular, the Omstein-e corresponding fitted, theoretical value. Errors are scaled with
Zernike-like wave vector dependence in directions perpenregpect to the minimum standard deviation.

dicular to the flow direction as predicted by E@85) and

(36) is confirmed. The fact that the data points are somewharefactor ofn/y we find thatg3/R5=0.71+0.08. This value
above the theoretical predictions in the middle figures is duéor B2/RZ is of the same order as a crude, theoretical esti-
to the contribution of additional stray intensities at smallmate [18,45. The relative strength of the anisotropic and
angles, close to the laser beam. Note that the predicted shagotropic distortions of the pair-correlation function is given
low minimum in scattering curves at fixég as functions of Py the ratio of the prefactors af ande. It turns out that the

k; atk,=0 is also seen experimentally, providkglis large anisotropic contributioffr, is a factor of 3.1 stronger than the

enough in order to be able to fully neglect stray light inten-iSOtropic contributiorF,.
sity fr%m the incident beam. y neg yig Figure 7 shows the dependence of the turbidity on the

; ; L ) shear rate, as obtained from E45) using the fit parameters
a ngg/usﬂoggs(f_ﬁ)i Sair;dig.’:(’ng e%risr'gt tif;a;[;\lﬁzd fgr c; n;l /t%/ e f?t s at 8 obtained from the scattering data fits. As the correlation

different equilibrium correlation lengths, as shown in Fig. 6 Ier!gth increas_e;, that is, on closer approaqh of the critical
A plot of In{x/ >} against ¢} is predicted to be a straight point, the turbidity becomes a stronger function of the shear

. . - ; . rate, and ultimately develops a nonanalytic dependence at
line with slope 4. A similar plot fole/ y anda/y should have  gmaj shear rates, in accordance with experiments on a
a slope equal to 2. The corresponding experimental curves Wticky-sphere” dispersiofi29].

Fig. 6 are in agreement with these predictions: slopes of |n Fig. 8 we also verifya posteriorithat the short-ranged
3.9£0.3 for\, 1.9+0.6 fore, and 2.1+0.3 fore are found. jsotropic distortion of the pair-correlation function indeed
From the linear fits in Fig. 6, the prefactors given in Eqgs.depends linearly on the shear rate. For this verification, we
(28) and (32) can be obtained. Using,=148 nm and the performed least square fits with respect to the shear-rate-
independent parameter y*, for various values of the expo-

' ' L 10 nentv. Such fit; correspond to expansio_ns of the f.or_m in Eq.
06} /4/< —e— 650N || (29) where P& is replaced byP€&)". Plotting the minimum
) e e standard deviation of these fits as a function of the value of
04l / - —e— 1160 nm | thg exponent, it can qlearly be seen that best_fits are ob-
oo / -~ < 1500 nm tained fory=1(+0.2). Since the equation of motion for the
7 /./ P pair-correlation function, even at low concentrations, is ex-
0.2 Jlj’/‘/:/v M tremely complicated, it is a formidable task to actually de-
AA:;,; o duce an expansion of the pair-correlation function of the
/® .. . form Eq. (29) from this equation of motion, especially at
0.0 plwa-=—"""" , , somewhat higher concentratiof@ur samples have a volume
10 20 30 40 fraction of colloidal spheres of about 2094 he experimen-

shear rate [s]

tal evidence for the expansion E@Q9) of the short-ranged
part of the pair-correlation function is indirect, since it is

FIG. 7. The shear-rate dependence of the turbidity for four corverified through its effect on the distortion on long-ranged

relation lengths, where the turbidity is calculated from E45)

correlations. Scattering data at large wave vectors on the

using the fit parameters as obtained from scattering data fits. Theame system would be desirable to verify E89) more

proportionality constant in Eq45) used here iSZT/kS:O.ZS.

directly.
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occurrence of a maximum of the real part of the time-Fourier
components of the structure factor at a finite wave vector is
as follows. Relaxation rates are determined(bydiffusion
rates which scale like~K? and (ii) driving forces which
scale likeAS [see Eq.(25) with A;=0]. The first relaxation
contribution is large at largkg, while the second contribution

is large at smalK. This leads to a maximum of the relax-
ation rate at finite wave vectors. This competition of two
relaxation mechanisms is responsible for a maximum in scat-
tering pattern after cessation of shear flg3id].

The imaginary component is increasingly negative on de-
creasingK, toward 0, meaning that the energy in an oscilla-
tory shear flow is elastically stored in the larger structures.
08 0 This is more clearly seen in Figs. ) and 1Qi) where
instead of the imaginary component, the phase shift with
295" respect to the applied field is plotted. Figuregsel@nd 1Qj)
show the time-independent component of the response,
which clearly increases on approachikg 0. In contrast to
gl e LS e s it o1 stationary flow experiments, the absolute fitsAS are not

t/T fI1, guantitative. Nevertheless, theory and experiment do show
the same features. Th€, dependence of the amplitude of

FIG. 9. The normalized responses of the structure fd&tSrof  the response for the experimental c§Big. 1Qc)] is spread
a near-critical colloidal dispersion with equilibrium correlation out over a larger range df; values than theoretically pre-
length£=945 nm to oscillatory shear flow in the time domalieft)  dicted [see Fig. 1(h)]. More importantly, the experimental
and frequency domaifright), for w=270.025 §*. The dimension-  time-dependent components relative to the time-independent
less wave vector here is equal ko=(1.4,0,0. The symbols rep- components are smaller than predicted by theory.
resent 'experir.nentelll data, while solid. lines indicate the theoretical Bacause the phase shift of the structure factor response
prediction, using\/y=0.6. Both experimental data and theory are g |5tive to the external field is a strong function of the wave
nﬁrm(;’“'zsd d"‘l’_'th respect to thhe reSplc_mds?_ o|2| the highest shear ratge o e relied on the fits of tHé-dependent phase shift to
The dashed line represents the applied field. determine the factox/y for each of the correlation lengths.
Per concentration, i.e., structure factor, the only fit parameter
was\/y. The shear-rate-dependent as well as the frequency-

The time-dependent distortion of the structure factor duglependent data sets were fitted simultaneously, varying this
to an oscillatory shear flow is measured. The shear ratéactor, since both parameters depend on that factor in the
ranges fromy=0 to 5.7 §%, and frequencies in the range of same waysee Eq(28)]. The results are plotted in Fig. 11 for
f=0.01t0 0.1 are applied. Equilibrium correlation a fixed shear rate and frequency. Due to critical slowing
lengths vary from 300 to 945 nm. We combined amplitudesdown, the phase shift becomes more pronounced when the
and frequencies such that we could make series of measureguilibrium correlation length increases. Furthermore, the
ments at constant shear raggin Eq. (3) and constant fre- phase shift increases dramatically with decreasing wave vec-
guency, respectively. Typical normalized responses of théor K toward 0. This is the result of the fact that relaxation
structure factor |[AS for the given wave vectork times scale like~K2?, which signifies the larger displace-
=(1.4,0,0 are plotted in Fig. 9, both in the time- and ments of colloidal spheres that are necessary for the relax-
frequency-domain, where the latter plots are obtained from ation of sinusoidal density profiles with longer wavelengths.
Fourier analysis. It is evident that the leading harmonic ofin order to get a good fit we had to introduce an additional
the response has twice the frequency of the applied fieldssmall wave-vector-independent phase shift. The origin of this
This is in accordance with an expansion of the structure facadditional phase shift is as yet unclear. The fits of the phase
tor in Egs.(40)<42) with respect to the shear rate: it turns shift turned out to be insensitive to the valuescofand e,
out that in the flow-vorticity plane, whei€,=0, the leading which were therefore not included. The values Xdry vs &
term in the shear rate is of second order. obtained from the fit are plotted in Fig. 6. From the oscilla-

Typical zeroth and second order Fourier components ofory flow experiments it is thus found that the exponent in
the structure factor are plotted in Fig. 10 for experiment andhe & dependence of/ y is equal to 4 to within experimental
theory. The amplitude of the second harmonic can be deconerror (the slope is 3.7+0) in accordance with theory and
posed into a redlFigs. 1@a) and 1@f)] and imaginanfFigs.  the scattering experiments under stationary flow.

10(b) and 1@g)] part. These components are related to the In Fig. Qa), time traces of the normalized responas

real part(corresponding to energy dissipatjand the imagi- are plotted for fixed frequency and wave vector, bartying

nary part(corresponding to elasticifyof the stress. As far as the maximum shear ratén this case the normalization is
structure that is probed within the flow-vorticity plane is con- performed with respect to the maximum value &% as
cerned, the main contribution to dissipation stems from &ound for the highest maximum shear rate. When increasing
small range around a finite wave vector, which is orientedhe shear rate for a fixed frequency, the response becomes
parallel to the shear flow. The microscopic origin for theincreasingly nonlinear. The degree of nonlinearity is mea-

E. Structure factor under oscillatory shear flow
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FIG. 10. The various Fourier
components of the shear-distorted
structure factor for experimeigt)
to (e) and theory(f) to (j). The ex-
perimental data were taken for
Y%=0.68 s and w=270.05 s?,
with ¢€=945 nm. The correspond-
ing theoretical values are calcu-
lated using\/y=0.6.

1 0.5 0 -0.5-1
K1l

sured by the appearance of higher order harmonics in the1.78 rad fory,=0.29 s?, to ¢=0.47 rad fory,=0.77 s?,
frequency domain of the response, as depicted in Rig.. 9 and ¢=-0.33 rad fory,=1.43 s™.

Comparing the amplitudes of the harmonics for the different Varying the frequencyt a fixed shear rate one expects
shear rates, we see that the fourth order harmonic appeanso phenomena to occur. First, one expects the imaginary
when doubling the maximum shear rate frony,  component to grow and the real component to diminish with
=0.29 s' to 9,=0.77 s'. When the maximum shear rate is increasing frequency. Second, one expects the degree of non-
doubled once again tp,=1.43 s?, also the sixth order har- linearity to decrease with increasing frequency.

monic of the response becomes significant. The fit to the Both phenomena can be observed in Fig. 12, where cuts
theory reproduces this increasing nonlinearity with increasare shown of the real and imaginary components of the struc-
ing shear rate. From the Fourier analysis also the phase shiftre factor atK;=0. The peak values of the real component
of the microstructural response with respect to the appliedlecrease and move outward while the peak values of the
field is obtained. The phase shift decreases frgm imaginary components increase and move inward with in-
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FIG. 11. TheK; dependence of the phase shift for several cor- AS) I AS),
relation lengths forw=270.5 ST and Y=1.0 1. The symbols . 1
are experimental data, and the lines are fits with respect to the ~ °° [ _'0'02
proportionality constank/ 7y, which is the only fit parameter. The
results of the fit are plotted in Fig. 6, and are seen to coincide with g 1
values obtained from stationary shear experiments. ~0:04 . ) . ) ) ) ) D
) -1 0 1 2
creasing frequency, for both the second and fourth harmonic. K1

When plotting the wave-vector-dependent phase gbiée
Fig. 13, an increasing time lag is observed with increasingf
frequency. This implies that for increasing frequency an in-

creasing amount of energy is stored at small wave vectors Qs of the real(top) and imaginary(bottom) parts of the response.

the critical structL_Jre, inste_ac_i of distorting_thg critical s_truc--rhe solid symbols represent the second component and the open
ture. The thec_)retlcal predictions are quahtatlvely. conﬁrmedsymbmS represent the fourth component of the experimental re-
by the experiments, though the fourth harmonic data argponse, for w=270.025 5! (A), w=270.05s! (@), and
quite noisy. =270.1 s (M). The solid and dashed lines indicate the theoretical
In order to compare the experimental values &8 with  predictions of the second and fourth components, respectively, us-
theory, the experimental data are scaled with a constant to fiig A/ »=0.6 to calculate). The experimental data are multiplied
the theoretical prediction. Interestingly, this constant, andy a factor 4.5 forw=270.025 s?, 3.0 for w=270.05 s, and 2.0
therefore the mismatch with theory, decreases with increaser w=270.1 s.
ing frequency, from 4.5 to 2, so that the quality of the fit
improves with increasing frequency. Apart from the scaling,of long-ranged correlations is only feasible when the distor-
also the positions of the maxima &S(K) do not quantita- tion of short-ranged correlations is properly taken into ac-
tively agree with the theoretical predictions. It is striking to count in theory. Scattering patterns in the flow-vorticity
see that for the second harmonic the maxima of the seconolane and turbidity for a whole set of equilibrium correlation
harmonic for the experiment occur at larg€f values as lengths(that is, the distance to the critical point before shear-
predicted by theory, whereas for the fourth harmonic theying) and shear rates could be quantitatively described in
occur at smallerK; values, even within the experimental terms of just three independent fitting parameters: one pa-
beam stop. Also the maxima of the imaginary componentsameter describing the susceptibility of the long-ranged
are found at very smakK values, within the region covered correlations and two parameters describing the susceptibility
by the beam stop. The phase shifts, however, are correctly
predicted by theorysee Fig. 13 showing that the time- T T T
dependent behavior is recovered by the theory.

FIG. 12. Frequency dependence of the shear-distorted structure
actor for £=945 nm and a fixed shear rajg=0.8+0.1 §%, with
3=0. Plotted are the amplitudes of the second and fourth harmon-

V. SUMMARY AND DISCUSSION

The aim of this work is to gain microscopic understanding
of the behavior of near-critical suspensions under shear flow.
We tested the theory for the evolution of the probability den-
sity function under shear, by measuriivg situ the shear-
distorted microstructure of colloid-polymer dispersions.

Understationary shear flowan unexpected shear-induced  FIG. 13. Frequency dependence of the phase shift for a fixed
distortion of near-critical microstructural order in directions shear rate(,=0.8+0.1 §1) with K3=0: »=270.025 s (0), w
perpendicular to the flow direction was observed. A quanti=270.05 s (O), w=270.1 s (A). The lines indicate the theoret-
tative explanation for the experimentally observed distortionical prediction, using\/y=0.6 to calculate).
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of the short-ranged correlations. The shear-rate anthen explains experimental results on(semjquantitative
equilibrium-correlation-length dependence of these paramievel: all the characteristic features of oscillatory shear-
eters is found to be in accordance with theory. induced microstructural order as a function of shear rate,
On first thought one might reason that short-ranged dismaximum strain amplitude, frequency, and equilibrium cor-
tortions are unimportant when probing the much more susre|ation length, are explained by our theory using the dressed
ceptible long-ranged, near-critical correlations. It is shownpeclet number as a single fit parameter.
however, that close to the critical point_ such distortions of The description of shear-induced short-ranged correla-
short-ranged correlations do play an important role. Thg;ong has been done in a semiempirical manner. In particular,
structure factor is of the Ornstein-Zernike form in dlrectlonsthe nonanalytic shear-rate dependence that we need to ex-

F_erpendir?ular tct) trée rovvddir;action,IvvthichIaIIO\t/\r/]s %ne to ge'glain the experiments is not yet understood. Probably there is
In€ a shear-rate-dependent correiation length. By probin coupling of the nonlinear response of long-ranged correla-

the structure factor in the flow direction we observe that the, "2 S o response of short-ranged distortions. A combi-

feor:r?:]a\t:/?trr]]oljtnsg;galrsflg\l/\\llvqryhsisSignzlIerroc:]t]2]‘2@21;4%?;:?;:35'0””6‘“0” of light scatteringto probe long-ranged distortions
9 : P and x-ray scatteringto probe short-ranged distortiori8])

displacement of the critical poinfThe fact that the data for on the same system may give insight into the origin of the

stationary shear can be fitted by assuming a distortion of thﬁonanalytic shear-rate dependence of short-ranged correla-

tsr:];rgr;?gaefi:g;rce(;gt:ﬁgslggggg? ;?fhghgﬁtriig‘falomteg?é%rﬂions close to the critical point. To confirm that our theory
: . P ca p indeed predicts viscoelastic behavior of near-critical disper-
nected to distortions of short-ranged correlatiphg)].

. . sions correctly, we need to perform Fourier-transform rheol-
Short-ranged correlations are less important when ex:

- . . . ogy, which is suitable to study nonlinear behavior of such
plaining experimental scattering data undscillatory flow ispersiong50]
probably due to the fact that short-ranged microstructurafj P '
order instantaneously follows the imposed shear flow. For a
(semiquantitative comparison of the data to theory we had
to introduce, however, an unexplained additional phase shift
to the temporal response of the near-critical structure factor, We acknowledge Tjerk Lenstra for the synthesis of the
and we had to normalize scattered intensities. The theorgolloidal particles and the preparation of the critical sample.
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