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Long-ranged microstructural order of a near-critical colloid-polymer mixture under stationary and oscillatory
shear flow is studied by means of time-resolved small-angle light scattering. The distance from the critical
point, the shear rate, and the frequency of oscillation are systematically varied. Unexpected shear-induced
distortions of critical microstructural order is observed in directions perpendicular to the flow direction, more
so on closer approach of the gas-liquid critical point. The measured distortion of long-ranged order can be
quantitatively understood on the basis of an approximate solution of the Smoluchowski equation, provided that
a nonanalytical distortion of short-ranged microstructural order is assumed. These short-ranged microstructural
changes, induced by the flow, account for the observed distortion perpendicular to the flow direction, and are
responsible for the shear-induced shift of the location of the gas-liquid critical point. The importance of
short-ranged correlations renders the behavior of critical systems under shear flow nonuniversal. The origin of
the nonanalytic dependence of short-ranged distortions on the shear rate remains unclear. Including these
short-ranged microstructural distortions, we find a good agreement between theory and experiment for both
stationary and oscillatory shear flow.
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I. INTRODUCTION

The effect of external fields, shear flow in particular, on
the phase behavior of colloidal systems has been of increas-
ing interest during recent years(see citations[1–3] for re-
views). Of special interest are colloidal systems since these
are experimentally more easily accessible as compared to
molecular systems because of the much larger time and
length scales involved. Moreover, the intercolloidal particle
potential can be varied from steeply attractive to long-ranged
repulsive, leading to very different types of phase transitions
and nonequilibrium states like gels and aggregates. Several
experimental techniques have been developed to study the
flow behavior of both the macroscopic and microscopic
structurein situ. Aggregation of attractive spheres was stud-
ied by confocal microscopy[4], two-dimensional video mi-
croscopy [5], and light scattering[6]. Crystallization of
charge or sterically stabilized spheres was studied by means
of rheology combined with small-angle neutron scattering
[7] or small-angle x-ray scattering[8], respectively.

Where the effect of shear flow on gelation, aggregation,
crystallization, and also spinodal decomposition[9–16] has
been studied extensively, relatively little is known about the
effect of shear flow on systems close to the gas-liquid critical
point, just before spinodal decomposition sets in. On ap-
proach of the gas-liquid critical point, interactions become
very long ranged. In addition, the gradient diffusion coeffi-
cient tends to zero so that the dynamics of the system se-
verely slows down, often referred to as critical slowing
down. Due to the long-ranged spatial correlations and their
very slow dynamics, the microstructural order near the gas-
liquid critical point is very sensitive to shear flow[1,17–19].

Nonlinear response to either stationary or oscillatory flow is
therefore expected to occur at very low shear rates. The out-
of-phase response of microstructural order to oscillatory
flow, responsible for the viscoelastic behavior of near-critical
suspensions, occurs at relatively low frequencies.

The effect of shear on near-critical systems has been stud-
ied for binary fluids[20,21], polymer blends[22–24], and
polymer [25–27] and micellar solutions[28]. In the present
paper we investigate, both theoretically and experimentally,
the response of a near-critical colloid-polymer mixture to
stationary and oscillatory shear flow. Thus we pursue the line
set by earlier scattering experiments on critical dispersions of
attractive colloids29–33 under shear. Having established the
link between the experimentally determined and theoretically
calculated microstructure, one can continue to predict rheo-
logical behavior[18], since it has been shown that shear-
induced distortions of the critical structure factor of such
dispersions are the origin of near-critical viscoelastic behav-
ior [30].

The effect of shear flow on macroscopic properties is of-
ten described on the basis of thermodynamics[14–16,34].
However, in principle no Hamiltonian or free energy can be
defined for a sheared system, which has been nicely demon-
strated by simulations on nucleation of crystals under shear
[35]. The response of colloidal dispersions to shear flow
must therefore be studied on the basis of kinetic equations,
e.g., the Smoluchowski equation, which is an equation of
motion for the probability density function of the position
coordinates of the colloidal particles. In addition, for near-
critical systems,nonlinear response should be described by
theory, since the long-ranged structures and slow dynamics
limits linear response to only very small shear rates. There
are a few theoretical approaches for microstructural order
under flow for simple fluids[36–40]. Here we shall consider
a theory that applies to near-critical dispersions of colloidal
spheres, that has been developed by one of the authors
(J.K.G.D.) [32,41]. In this theory, it is assumed that the
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shear-induced distortions of short-ranged microstructural or-
der can be neglected. That is, it is assumed that the pair-
correlation function for small separations between colloidal
particles (at most equal to the range of the bare pair-
interaction potential) is not affected by shear flow for the
small shear rates that are needed to perturb critical long-
ranged structure. As will turn out in the present study, how-
ever, this neglect is not justified, and data can be interpreted
on the basis of this theory only if it is extended to include
such short-ranged distortions. It has been shown before that
these short-ranged distortions are responsible for the shear-
induced shift of the gas-liquid critical point[42]. Hence, very
close to the critical point, a small shift is already sufficient to
substantially affect long-ranged order. What is needed in this
extension to explain the experimental data is a leading order
isotropic distortion that is proportional to the absolute value
of the shear rate. If one assumes that the pair-correlation
function for small separations between colloidal particles is
an analytic function of the shear rate, for symmetry reasons,
the leading order isotropic correction should vary like the
shear rate squared. The nonanalytic behavior that is found in
the present study is therefore unexpected and remains unex-
plained. A direct verification of the nonanalytic shear-rate
dependence of the location of the critical point has not yet
been undertaken.

Here we performin situ time-resolved small-angle light
scattering measurements in the velocity-vorticity plane on
near-critical colloid-polymer mixtures, systematically vary-
ing the shear rate under stationary flow and the frequency
and strain amplitude under oscillatory flow. The system that
is used consists of colloidal hard spheres, where a depletion
attraction is induced by adding polymer to the solvent
[43,44]. At sufficiently high concentrations of polymer, a
gas-liquid phase separation occurs. The distance to the criti-
cal point, as measured by the correlation length of the un-
sheared, quiescent system, can easily be tuned and the criti-
cal structure factor is accessible with small-angle light
scattering[30,33].

We shall first discuss in Sec. II the theoretical prediction
for the shear-rate and frequency dependence of the Ornstein-
Zernike structure factor, with the neglect of shear-induced
short-ranged distortions. It is then shown why the shear-rate
dependence of the pair-correlation function for short dis-
tances becomes important on approach to the critical point.
The theory is extended in Sec. III to include these short-
ranged distortions. Experimental data are then presented in
Sec. IV, which are compared to both the older version of the
theory and the extended theory. The paper concludes with a
summary and conclusions.

II. THEORETICAL PREDICTION WITHOUT
DISTORTIONS OF SHORT-RANGED CORRELATIONS

In this section, an existing theory[32,41] on the shear-
induced distortion of the Ornstein-Zernike structure factor
will be briefly reviewed. One of the assumptions involved in
deriving an explicit expression for the structure factor is in-
correct on close approach to the critical point, and will be
reconsidered in the subsequent section.

The flow that will be considered here is a laminar flow
with spatially uniform shear rateġ. The flow velocityu is
chosen as

u = ġ Ĝ · r , s1d

where the normalized velocity gradient tensorĜ is equal to

Ĝ = 10 1 0

0 0 0

0 0 0
2 . s2d

This is a flow in thex direction, with its gradient in they
direction, while thez direction is the vorticity direction. In
case of stationary shear flow, the shear rateġ is a constant,
while for oscillatory shear flow,

ġ = ġ0 coshvtj, s3d

wherev is the frequency of oscillation.
The starting point for the derivation of an equation of

motion for the pair-correlation function is the Smoluchowski
equation. This is the equation of motion for the probability
density functionP; Psr 1, . . . ,r N,td of the position coordi-
natesr j, j =1, . . . ,N, of the N spherical macromolecules in
the system under consideration. With the neglect of hydro-
dynamic interactions, the Smoluchowski equation reads
[45–47]

]P

]t
= D0o

j=1

N

= j · f= jP + bP= jFg − ġo
j=1

N

= j · fPĜ · r jg.

s4d

Here, D0 is the Einstein diffusion coefficient for a single,
noninteracting macromolecule,= j is the gradient with re-
spect tor j, b=1/kBT (kB is the Boltzmann constant andT is
the temperature), and F is the total potential energy of the
assembly ofN macromolecules(averaged over the phase
space coordinates of the solvent molecules). An equation of
motion for the pair-correlation functiong can be found by
integration, since for homogeneous systems with number
densityr, by definition,

P2sr 1,r 2,td =
r2

N2gsr 1 − r 2,td

=E dr 3 ¯E dr NPsr 1,r 2,r 3, . . . ,r N,td, s5d

whereP2 is the two-particle probability density function. As-
suming a pairwise additive interaction potential, that is,

F = o
i. j

N

Vsur i − r jud, s6d

whereV is the bare pair-interaction potential, integration of
the Smoluchowski equation(4) leads to(with r =r 1−r 2 the
distance between two particles and= the gradient operator
with respect tor )
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]gsr ,td
]t

= 2D0 = · f=gsr ,td + bgsr ,tdh=Vsrd − Findsr ,tdjg

− ġ = fgsr ,tdĜ · r g. s7d

Here, the force between two particles that is mediated via
other particles, the “indirect force,” is given by(with =8 the
gradient operator with respect tor 8=r 1−r 3),

Findsr ,td = − rE dr 8f=8Vsr 8dg
g3sr ,r 8,td

gsr ,td
, s8d

whereg3 is the triplet correlation function, which is defined
as, similarly tog in Eq. (5),

r3

N3g3sr 1,r 2,r 3,td ; E dr 4 ¯E dr NPsr 1,r 2,r 3,r 4, . . . ,r N,td.

s9d

The following steps are now made to obtain from Eq.(7) a
closed equation of motion for the total-correlation function
h;g−1, the Fourier transform of which is essentially the
structure factor that is measured in a light scattering experi-
ment:

(i) Since the total-correlation functionh vanishes at infi-
nite separation between two particles, its asymptotic behav-
ior at large distances is obtained by linearization of Eq.(7)
with respect toh, as far as the long-ranged contributions ofh
are concerned. It will be shown later that linearization is
allowed only when the critical point is not approached very
closely, and complies with a mean field approximation.

(ii ) The classic superposition approximation for the triplet
correlation function,

g3sr 1,r 2,r 3,td = gsr 1 − r 3,tdgsr 3 − r 2,tdgsr 2 − r 1,td,

s10d

is a very bad approximation close to the critical point(this
closure leads to a finite correlation length at the critical point
[48,32]. According to Eq.(8) for the indirect force, a closure
relation is needed only for distancesr8,RV, with RV the
range of the pair-interaction potential, whiler @RV. Hence,
the only configurations for which a closure relation is needed
are those where the two particles atr 1 and r 3 are in each
other’s vicinity, while the third particle atr 2 is far away from
these two particles. The effect of the presence of the third
particle is that it enhances the local density around the two
neighboring particles. This density enhancement is equal to
rh(sr 1+r 3d /2−r 2,t). The pair-correlation functiongsr =r 1

−r 3,td in the classical superposition approximation(10) is
now simply replaced by the pair-correlation function evalu-
ated at the local densityrf1+h(sr 1+r 3d /2−r 2,t)g. To lead-
ing order inh we thus have

g3sr 1,r 2,r 3,td

= Fgsr 1 − r 3,td +
dgsr 1 − r 3,td

dr
rh„sr 1 + r 3d/2 − r 2,t…G

3gsr 3 − r 2,tdgsr 2 − r 1,td. s11d

The pair-correlation functions here comply with the number

density r. This “improved superposition approximation”
leads to the correct(mean field type) divergence of the cor-
relation length on approach to the critical point.

(iii ) The third approximation concerns the neglect of
shear-induced distortions of short-ranged correlations. First
notice that in Eq.(8) we need onlygsr 8=r 1−r 3,td from the
closure in Eq.(11) for distances between particles 1 and 3
smaller than the rangeRV of the pair-interaction potential.
The reason for the neglect of the shear-rate dependence of
gsr 8d is that long-ranged, slowly fluctuating critical micro-
structural order is distorted much more easily than short-
ranged, relatively fast fluctuating structural order. This can
be quantified as follows. The distortion of correlations that
extend over distances of at mostRV is measured by the so-
called bare Peclet number

Pe0 =
ġRV

2

2D0
. s12d

As will be shown later, the distortion of near-critical micro-
structural order is measured by the dressed Peclet number

l =
ġj2

2Deff , s13d

wherej is the correlation length of the unsheared, quiescent
suspension, andDeff is an effective diffusion coefficient that
describes the relaxation of long-wavelength density fluctua-
tions (a precise definition will be given later). Sincej@RV
and Deff!D0, due to “critical slowing down,” the dressed
Peclet number is usually very large for shear rates where the
bare Peclet number is still small. We shall therefore write

gsr 8 = r 1 − r 3,td = geqsr8d for r8 , RV, s14d

wheregeq is the equilibrium pair-correlation function, that is,
the correlation function of the quiescent, unsheared system.

(iv) Since the interest here is in the long-wavelength criti-
cal microstructure, convolution type integrals that are en-
countered can be gradient expanded up to leading order.

An analysis of the equation of motion(7) invoking these
three approximations leads to the following equation of mo-
tion for the total correlation function:

]hsr ,td
]t

= 2bD0 = ·FdP

dr
= hsr ,td − S = ¹2hsr ,tdG

− ġ = · fĜ · rhsr ,tdg, s15d

where

P = b−1r −
2p

3
r2E

0

`

dr8r83dVsr8d
dr8

geqsr8d s16d

is the osmotic pressure, and

S =
2p

15
rE

0

`

dr8r85dVsr8d
dr8

Fgeqsr8d +
1

8
r

dgeqsr8d
dr

G s17d

is the Cahn-Hilliard square gradient coefficient. Fourier
transformation leads to the equation of motion for the struc-
ture factor,
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]Ssk,td
]t

= ġ k1
]Ssk,td

]k2
− 2Deffskdk2fSsk,td − Seqskdg,

s18d

wherekj is the j th component of the wave vectork, andSeq

is the Ornstein-Zernike structure factor,

Seqskd =
1

bS

1

j−2 + k2 , s19d

wherej is the correlation length of the non sheared system,

j =ÎSY dP

dr
. s20d

Furthermore, the wave-vector-dependent effective diffusion
coefficient is defined as

Deffskd = D0bFdP

dr
+ Sk2G = D0bSfj−2 + k2g. s21d

Sinceb dP /dr→0 on approach to the critical point, the cor-
relation length diverges as it should, whileDeffsk=0d→0,
implying that concentration fluctuations of long wavelength
become very slow, which is commonly referred to critical
slowing down.

The neglect of quadratic terms inh in the equation of
motion (15) [approximation(i)] is only allowed when typical
values of h2 at large distances are much smaller than
hb dP /dr. This is violated very close to the critical point.
Linearization with respect toh can thus be regarded as a
mean field approximation.

In order to quantify the response to(oscillatory) shear
flow, Eq. (18) is written in dimensionless form. To this end,
the dimensionless time and wave vector

t =
2Deff

j2 t,

K = kj s22d

are introduced. Time is thus expressed in units of the time
that a colloid takes to diffuse over a distance equal to the
correlation length, and the wave vector in units of the inverse
correlation length. Forstationary shear flow, the equation of
motion (18) transforms to

0 = lK1
]SsK d
]K2

− K2s1 + K2dfSsK d − SeqsKdg, s23d

where l is the dressed Peclet number defined in Eq.(13)
with,

Deff = Deffsk = 0d = D0bSj−2, s24d

where in the last equality Eq.(21) has been used. Foroscil-
latory shear flow[see Eq.(3)] it is found that

]SsK ,td
]t

= l0 coshVtjK1
]SsK d
]K2

− K2s1 + K2dfSsK d − SeqsKdg,

s25d

where the Peclet numberl0 for oscillatory shear flow is simi-
larly defined as in Eq.(13) for stationary flow,

l0 =
ġ0j2

2Deff , s26d

and whereV is the Deborah number

V =
vj2

2Deff . s27d

Equations(23) and(25) can be solved analytically(see Refs.
[32] and [41]). Since more general equations of motion will
be solved in the next section, we shall not display these
results here.

Since in Eqs.(23) and (25) the shear rate is always mul-
tiplied by K1, these equations predict that there is no effect of
shear flow in directions perpendicular to the flow direction.
As will be discussed later, this is not confirmed by experi-
ments. The experiments reveal large distortions also in direc-
tions perpendicular to the flow. The reason for this discrep-
ancy is discussed in the subsequent section.

Note that the Peclet number(13) and the Deborah number
(27) can also be written as

l =
ġj4

2D0bS
, V =

vj4

2D0bS
. s28d

Hence, bothl andV are,j4, with the same proportionality
constant. This dependence on the correlation length can be
verified experimentally. The large values ofl and V for
relatively small values ofġ and v, respectively, quantifies
the large susceptibility of near-critical systems.

III. THE EXTENDED THEORY: THE ROLE OF
DISTORTIONS OF SHORT-RANGED CORRELATIONS

The approximation(iii ) discussed in the previous section
states that short-ranged correlations are relatively little af-
fected by flow as compared to long-ranged correlations. We
shall show in the present section that this seemingly straight-
forward approximation is not correct, despite the fact that the
Peclet numbers(12) and (13), which measure the distortion
of short- and long-ranged correlations, respectively, are or-
ders of magnitude different.

Instead of completely neglecting short-ranged distortions,
we shall keep leading order deviations from equilibrium
structure, that is, instead of Eq.(14), we shall expand the
correlation function to first order in the bare Peclet number
as

gsr 8,td = geqsr8dH1 + uPe0uf0sr8d − Pe0r 8 · Ê · r 8

r82 f1sr8dJ
for r8 , RV, s29d

where(the superscriptT stands for transposition)
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Ê =
1

2
fĜ + ĜTg s30d

is the symmetric part of the dimensionless velocity gradient
tensor. Furthermore, the functionsf0 and f1 describe the iso-
tropic and anisotropic responses of the short-ranged part of
the pair-correlation function to shear flow, respectively. Here,
Pe0 is the bare Peclet number in Eq.(12), whereġ is either a
constant for stationary flow or given by Eq.(3) for oscilla-
tory flow.

Wheng for short distances is an analytic function of the
shear rate, the leading order isotropic distortion is quadratic
in the Peclet number for symmetry reasons. That is, the iso-
tropic contribution in Eq.(29) is absent when the short-
ranged part ofg can be expanded in a converging power
series ofġ. As we shall see later, we do need an isotropic
distortion that is linear in the shear rate to explain experi-
mental data. For symmetry reasons, such linear isotropic dis-
tortion can only be proportional to the absolute value of the
shear rate. This implies that the pair-correlation function for
short distances is a nonanalytic function of the shear rate.
The probable reason for this is as follows. In the equation of
motion for g, hydrodynamic interactions give rise to terms
proportional to integrals containing triplet and four-point
pair-correlation functions. These integrals extend over the
entire space, and thus probe the long-ranged behavior ofg.
Since close to the critical point these long-range correlations
are significant, it might be that these terms give rise to the
nonanalytic behavior ofg for small distances. This is how
long-ranged correlations could give rise to a nonanalytic re-
sponse of short-ranged correlations.

A. Stationary shear flow

Repeating the analysis discussed in the previous section,
using Eq.(29) instead of assumption(iii ), Eq. (23) for sta-
tionary shear flow is found to extend to

0 = lK1
]SsK d
]K2

− K2s1 + e + K2dSsK d + K2s1 + K2dSeqsKd

+ aK1K2fSsK − 1dg. s31d

There are two new parameterse anda which are defined as

e =
uġusRVjd2

2D0S
F0

with

F0 =
4p

3
rE

0

`

dr r3dVsrd
dr

Hgeqsrdf0srd +
1

2
r̄

dfgeqsrdf0srdg
dr̄

J ,

a =
ġsRVjd2

2D0S
F1

with

F1 =
8p

15
rE

0

`

dr r3dVsrd
dr

Hgeqsrdf1srd +
1

2
r̄

dfgeqsrdf1srdg
dr̄

J
s32d

The dimensionless parametere measures the susceptibility of
isotropic short-ranged distortions, anda of the anisotropic
distortions.

The solution of Eq.(31) reads

SsK d =
1

lK1
E

K2

±`

dXhsK2 − K2
2 + X2ds1 + K2 − K2

2

+ X2dSeqsÎK1
2 + X2 + K3

2d − aK1Xjexph− FsK uXd/lK1j,

s33d

with

FsK uXd = sX − K2dsK2 − K2
2ds1 + e + K2 − K2

2d +
1

3
sX3 − K2

3d

3s1 + e + 2K2 − 2K2
2d +

1

5
sX5 − K2

5d − aK1sX2 − K2
2d.

s34d

The upper integration limit in Eq.(33) is equal to +̀ when
lK1.0 and equal to −̀ whenlK1,0. Forl→0, the func-
tion that multipliesSeq in the above equation becomes a
d-function distribution inX, so thatS becomes equalSeq

without shear flow, as it should.
Contrary to the case where short-ranged distortions are

neglected, one now obtains a finite distortion in directions
perpendicular to the flow direction whereK1=0. In these
directions, according to Eq.(31), the structure factor attains
an Ornstein-Zernike-like form,

SsK d =
1

bS

1

sjef fd−2 + k2 sK1 = 0d, s35d

where the “effective,” shear-rate-dependent correlation
length is equal to

jef f = j/Î1 + e. s36d

The interpretation of this result is that the location of the
critical point is shifted on applying shear flow. The accom-
panied shear-induced change of the correlation length is thus
equal to(note thate.0)

Dj

j
;

jef f − j

j
=

1
Î1 + e

− 1 , 0. s37d

This shear-induced decrease of the correlation length can be
interpreted as being a consequence of a shear-induced shift
of the critical point. That the shear-induced displacement of
the gas-liquid spinodal(including the critical point) is indeed
related to shear distortion of short-ranged correlations has
been shown in[42].

B. Oscillatory shear flow

Including short-ranged distortions, the equation of motion
Eq. (25) for oscillatory shear flow extends to
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]SsK ,td
]t

= l0 coshVtjK1
]SsK ,td

]K2

− K2s1 + ue0 coshVtju + K2dSsK ,td

− K2s1 + K2dSeqsKd + a0K1K2fSsK ,td − 1g,

s38d

where the dimensionless numberse0 anda0 are defined as

e0 =
uġ0usRVjd2

2D0S
F0,

a =
ġ0sRVjd2

2D0S
F1, s39d

whereF0 andF1 are given in Eq.(32).
The solution of this equation of motion reads

SsK ,td =E
−`

t

dt8hG2st8df1 + G2st8dgSeq
„Gst8d…

− a0 coshVt8jG1st8dG2st8djexph− Hst,t8dj,

s40d

where

Hst,t8d =E
t8

t

dt9hG2st9df1 + ue0 cossVt9du + G2st9dg

− a0 cossVtdG1st9dG2st9dj s41d

and

Gst9d = SK1,K2 +
l0

V
K1 sinhVtj −

l0

V
K1 sinhVt9j,K3D .

s42d

In Eq. (40), G1st8d andG2st8d are the first and second com-
ponents ofGst8d in Eq. (42), respectively. Note that in di-
rections perpendicular to the flow direction, whereK1=0,
this result reduces to

SsK ,td = K2s1 + K2dSeqsKdE
−`

t

dt8 exph− Hst,t8dj sK1 = 0d,

s43d

with

Hst,t8d = K2s1 + K2dst − t8d + K2E
t8

t

dt9ue0 cossVt9du.

s44d

As for stationary shear flow, the structure factor deformation
in directions perpendicular to the flow direction is nonzero
due to the effect of the flow on short-ranged correlations.

IV. EXPERIMENTS

A. System and light scattering setup

The system used in this study consists of colloidal silica
spheres(102 nm diameter) grafted with stearyl alcohol and

dissolved in cyclohexane. These spheres behave as almost
perfect hard spheres. Polydimethylsiloxane(PDMS, Jansen)
with a molecular weight of 206 kg/mol and a radius of gy-
ration of 23 nm was added to induce depletion attractions
between the colloidal particles, giving rise to a gas-liquid
phase transition. The critical point of the dispersion was
found at a colloid volume fraction of 19% and a polymer
concentration of 6.5 mg/ml, by locating the point on the
binodal where, after phase separation, the volumes of the two
phases are equal. The distance to the critical point can be
tuned by gently evaporating from or adding solvent to a dis-
persion with the critical composition ratio of silica to poly-
mer. For more details see Ref.[49].

Small-angle, time-resolved light scattering experiments
are performed using a home-built optical couette shear cell,
where the radius of the inner cylinder is 21 mm and with a
gap width of 2.47 mm. For oscillatory experiments, the inner
cylinder oscillates with angular amplitudes between 10° and
130°, while frequencies are varied from 0.025 to 0.1 Hz. The
shear cell is placed in a cylindrical toluene bath with the
second gap of the cell in the center of the bath. Scattered
light originating from the first gap is blocked by means of a
pinhole that is positioned within the hollow inner cylinder.
The inner cylinder is filled with toluene. A 5.0 mW He-Ne
laser (Melles-Griott) with a wavelength of 632.8 nm was
used as a light source. The laser beam is directed along the
gradient direction, so that the flow-vorticity plane is probed
in our experiments. The scattered intensity is projected on a
screen. A hole in the center of this screen prevents detection
of stray light from the laser beam. The size of this hole
corresponds to a scattering angular range 0–1.4° and a wave
vector range of 0–0.24mm−1. Images of the screen were
taken in backscattering mode with a peltier cooled 12-bit
charge-coupled device(CCD) camera, with 5823782 pixels
(Princeton Instruments, microMAX). The maximum scatter-
ing angle was 7.7°, which corresponds to a wave vector of
1.3 mm−1. The deformation of the scattering pattern due to
the cylindrically shaped toluene bath was corrected for. A
Hameg HM8131-2 function generator was used to control
the oscillatory motion of the motor. The amplitude of the
oscillation was measured at the axis of the couette cell with
an angle recorder(TWK-elektronik), which was connected to
a LeCroy oscilloscope. A measurement consists of a series of
128 or 256 images(depending on the period of oscillation)
which were taken at time intervals between 0.25 and 0.5 s.
The start of a series of images was triggered by the Hameg
function generator, such that each set of images starts at an
instant of time where the shear rate is zero. For a typical
experiment ten of such time series were averaged. The ex-
periment was controlled by a home-writtenLABVIEW pro-
gram. A schematic overview of the setup is given in Fig. 1.

B. Relation between the scattered intensity
and the structure factor

The high turbidity of the near-critical samples must be
accounted for on relating measured intensities to the struc-
ture factor. The turbidity not only depends on the distance to
the critical point but is also a function of the shear rate[29],
since it is related to the structure factor as
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t =
Ct

k0
2E

0

2p

dfE
0

2k0

dk kPskdSskd. s45d

HereCt is an experimental constant determined by the vol-
ume and dielectric constant of the colloidal particles,Pskd is
the form factor of the colloidal spheres(see [33]), and k0
=2p /l is the wave vector of the incident light, withl the
wavelength of the laser light within the dispersion[29,45].
The structure factor is related to the measured intensity as

SsK d =
IsK d − IbacksK d

A
. s46d

Here, the “susceptibility”A is the proportionality constant
between experimental intensities and the structure factor.
Furthermore,IbacksK d is the background intensity, which is
the intensity as measured from the couette cell filled with
just solvent. The background intensityIback arises from stray
light and reading noise of the CCD camera. The turbidity
dependence of the susceptibilityA can be accounted for ex-
plicitly by writing it as

Asj,ġd = Cexptexphtsj,ġdlj, s47d

with Cexpt an experimental constant that is independent of
the turbidity, andl the optical path length, which is equal to
two times the gap width of the couette cell. The dependence
of the turbidity on the distance from the critical point(mea-
sured by the correlation lengthj without shear flow) and the
shear rate isġ denoted here explicitly. The relation between
the turbidity and the structure factor thus leaves a single
adjustable parameterCexpt to relate intensities to the structure
factor.

C. The structure factor without shear flow

An experimental equilibrium Ornstein-Zernike structure-
factor is plotted in Fig. 2. The equilibrium correlation length
j is obtained from this structure factor(after angular averag-
ing of the two-dimensional scattering pattern) by an
Ornstein-Zernike fit, that is, a linear fit of 1/Seqskd vs k2.
According to Eq.(19), the square root of the slope divided
by the intercept of such a plot gives the correlation length.
The corresponding Ornstein-Zernike plots are given in Fig. 3

for equilibrium suspensions, which are used in the shear ex-
periments later on.

D. Structure factor under stationary shear flow

We measured the shear-induced distortion of the structure
factor for shear rates ranging fromġ=0 to 33.5 s−1, for cor-
relation lengths in the range of 300 to 1500 nm. Experimen-
tal data for the distortion

DSsK d ;
bS

j2 hSeqsKd − SġsK dj s48d

are compared to the experimental predictions in Eqs.(33)
and(34). Experimental data forDS will also be compared to
the theory where short-ranged distortions of the pair-
correlation function are not included. For convenience of
data analysis we extract data from ten cross sections from
each scattering pattern: five cross sections at fixed values of
K1 as functions ofK3, and five cross sections at fixedK3 as
functions of K1. These cross sections are indicated by the
thick lines in Fig. 2. In accordance with theory, the scattered
intensity for cross sections is found to be invariant under

FIG. 1. Schematic overview of the experimental setup for small-
angle light scattering under(oscillatory) shear flow.

FIG. 2. The equilibrium Ornstein-Zernike structure factor, cor-
responding to a correlation length ofj=650 nm. The thick lines
indicate typical cross sections that are used for data analysis of
sheared systems.

FIG. 3. Ornstein-Zernike plots from which equilibrium correla-
tion lengths are determined, as indicated in the figure.
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coordinate inversion to within experimental error. This re-
sults in six independent scattering curves per scattering pat-
tern, that is, for each correlation length and each shear rate.
These six scattering curves are fitted simultaneously for all
correlation lengths and shear rates together to the theoretical
predictions. There are only three shear-rate-independent fit
parameters:l / ġ, a / ġ, ande / ġ. The effect of the turbidity,
which also depends on these three parameters, was included
in the fit, using Eq.(45) to calculate the turbidity. The pref-
actorCexpt in the integral in Eq.(45) constitutes a fourth fit
parameter, which is independent of both the shear rate and
the equilibrium correlation length. Its value was found to be
equal toCt /k0

2=0.25.

Figures 4 and 5 show the fit results for the equilibrium
correlation lengths 700 and 1500 nm, respectively. The wave
vector is always expressed in dimensionless units:K=kj,
with k the physical wave vector. The finite distortion of the
structure factor in directions perpendicular to the flow direc-
tion is most clearly seen in the top left corner plots in these
figures, which are cross sections wherek1=0. As discussed
in Sec. II, when contributions from shear-induced distortions
of short-ranged correlations are neglected, theory predicts no
effect of shear flow in directions wherek1=0. Clearly, the
effect of distortions of short-ranged correlations is essential
to explain our experimental data on shear-induced long-
ranged correlations. Moreover, the extended theory, where

FIG. 4. Typical fitting results
of the shear-induced distortion of
the structure factorDS for a corre-
lation length of 770 nm and three
shear rates: 33.5 s−1 (n), 7.45 s−1

(s), and 2.3 s−1 (h). Points are
experimental data, solid lines are
fits to the theory where distortions
of short-ranged correlations are
neglected, while the dash-dotted,
dotted, and dashed lines are fits to
the theory with the inclusion of
shear-induced distortions of short-
ranged correlations. The values
for the wave vectors indicated in
the figures are the wave vectors
where cross sections are taken, as
indicated by the thick lines in Fig.
2. Note the difference in scale of
the vertical axis for the different
cross sections.

FIG. 5. Same as in Fig. 4, now
for a correlation length of
1500 nm and for the three shear
rates ġ=20.46 s−1 (n), ġ
=1.84 s−1 (s), and ġ=0.87 s−1

(h).
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short-ranged distortions are accounted for, describes the ex-
periments quantitatively correctly. In particular, the Ornstein-
Zernike-like wave vector dependence in directions perpen-
dicular to the flow direction as predicted by Eqs.(35) and
(36) is confirmed. The fact that the data points are somewhat
above the theoretical predictions in the middle figures is due
to the contribution of additional stray intensities at small
angles, close to the laser beam. Note that the predicted shal-
low minimum in scattering curves at fixedk3 as functions of
k1 at k1=0 is also seen experimentally, providedk3 is large
enough in order to be able to fully neglect stray light inten-
sity from the incident beam.

Equations(28) and (32) predict thatl / ġ,j4, a / ġ,j2,
and e / ġ,j2. This is indeed what is found from the fits at
different equilibrium correlation lengths, as shown in Fig. 6.
A plot of lnhl / ġj against lnhjj is predicted to be a straight
line with slope 4. A similar plot fore / ġ anda / ġ should have
a slope equal to 2. The corresponding experimental curves in
Fig. 6 are in agreement with these predictions: slopes of
3.9±0.3 forl, 1.9±0.6 fora, and 2.1±0.3 fore are found.
From the linear fits in Fig. 6, the prefactors given in Eqs.
(28) and (32) can be obtained. UsingRV=148 nm and the

prefactor ofl / ġ we find thatbS /RV
2 =0.71±0.08. This value

for bS /RV
2 is of the same order as a crude, theoretical esti-

mate [18,45]. The relative strength of the anisotropic and
isotropic distortions of the pair-correlation function is given
by the ratio of the prefactors ofa ande. It turns out that the
anisotropic contributionF1 is a factor of 3.1 stronger than the
isotropic contributionF0.

Figure 7 shows the dependence of the turbidity on the
shear rate, as obtained from Eq.(45) using the fit parameters
as obtained from the scattering data fits. As the correlation
length increases, that is, on closer approach of the critical
point, the turbidity becomes a stronger function of the shear
rate, and ultimately develops a nonanalytic dependence at
small shear rates, in accordance with experiments on a
“sticky-sphere” dispersion[29].

In Fig. 8 we also verifya posteriori that the short-ranged
isotropic distortion of the pair-correlation function indeed
depends linearly on the shear rate. For this verification, we
performed least square fits with respect to the shear-rate-
independent parametere / ġn, for various values of the expo-
nentn. Such fits correspond to expansions of the form in Eq.
(29) where Pe0 is replaced bysPe0dn. Plotting the minimum
standard deviation of these fits as a function of the value of
the exponentn, it can clearly be seen that best fits are ob-
tained forn=1s±0.2d. Since the equation of motion for the
pair-correlation function, even at low concentrations, is ex-
tremely complicated, it is a formidable task to actually de-
duce an expansion of the pair-correlation function of the
form Eq. (29) from this equation of motion, especially at
somewhat higher concentrations(our samples have a volume
fraction of colloidal spheres of about 20%). The experimen-
tal evidence for the expansion Eq.(29) of the short-ranged
part of the pair-correlation function is indirect, since it is
verified through its effect on the distortion on long-ranged
correlations. Scattering data at large wave vectors on the
same system would be desirable to verify Eq.(29) more
directly.

FIG. 7. The shear-rate dependence of the turbidity for four cor-
relation lengths, where the turbidity is calculated from Eq.(45)
using the fit parameters as obtained from scattering data fits. The
proportionality constant in Eq.(45) used here isCt /k0

2=0.25.

FIG. 6. The parametersl / ġ, a / ġ, ande / ġ obtained from the fit
of the scattering data under stationary shear flow as functions of the
equilibrium correlation lengthj. For the parameterl / ġ results from
oscillatory flow experiments are also shown(open symbols), which
will be discussed in the subsequent section.

FIG. 8. The minimum standard deviation from least squares fits
varying the exponentn, the shear-rate dependence of the short-
range distortione / ġn, for three different correlation lengths as in-
dicated in the figure. The error here is defined ass1/ndo jsYj

expt

−Yj
thd2, wheren is the number of data points involved in the fit,

Yj
expt is the j th experimental value for the structure factor, andYj

th is
the corresponding fitted, theoretical value. Errors are scaled with
respect to the minimum standard deviation.
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E. Structure factor under oscillatory shear flow

The time-dependent distortion of the structure factor due
to an oscillatory shear flow is measured. The shear rate
ranges fromġ=0 to 5.7 s−1, and frequencies in the range of
f =0.01 to 0.1 s−1 are applied. Equilibrium correlation
lengths vary from 300 to 945 nm. We combined amplitudes
and frequencies such that we could make series of measure-
ments at constant shear rateġ0 in Eq. (3) and constant fre-
quency, respectively. Typical normalized responses of the
structure factor uDSu for the given wave vectorK
=s1.4,0,0d are plotted in Fig. 9, both in the time- and
frequency-domain, where the latter plots are obtained from a
Fourier analysis. It is evident that the leading harmonic of
the response has twice the frequency of the applied field.
This is in accordance with an expansion of the structure fac-
tor in Eqs.(40)–(42) with respect to the shear rate: it turns
out that in the flow-vorticity plane, whereK2=0, the leading
term in the shear rate is of second order.

Typical zeroth and second order Fourier components of
the structure factor are plotted in Fig. 10 for experiment and
theory. The amplitude of the second harmonic can be decom-
posed into a real[Figs. 10(a) and 10(f)] and imaginary[Figs.
10(b) and 10(g)] part. These components are related to the
real part(corresponding to energy dissipation) and the imagi-
nary part(corresponding to elasticity) of the stress. As far as
structure that is probed within the flow-vorticity plane is con-
cerned, the main contribution to dissipation stems from a
small range around a finite wave vector, which is oriented
parallel to the shear flow. The microscopic origin for the

occurrence of a maximum of the real part of the time-Fourier
components of the structure factor at a finite wave vector is
as follows. Relaxation rates are determined by(i) diffusion
rates which scale like,K2 and (ii ) driving forces which
scale likeDS [see Eq.(25) with l0=0]. The first relaxation
contribution is large at largeK, while the second contribution
is large at smallK. This leads to a maximum of the relax-
ation rate at finite wave vectors. This competition of two
relaxation mechanisms is responsible for a maximum in scat-
tering pattern after cessation of shear flow[31].

The imaginary component is increasingly negative on de-
creasingK1 toward 0, meaning that the energy in an oscilla-
tory shear flow is elastically stored in the larger structures.
This is more clearly seen in Figs. 10(d) and 10(i) where
instead of the imaginary component, the phase shift with
respect to the applied field is plotted. Figures 10(e) and 10(j)
show the time-independent component of the response,
which clearly increases on approachingK=0. In contrast to
stationary flow experiments, the absolute fits ofDS are not
quantitative. Nevertheless, theory and experiment do show
the same features. TheK1 dependence of the amplitude of
the response for the experimental case[Fig. 10(c)] is spread
out over a larger range ofK1 values than theoretically pre-
dicted [see Fig. 10(h)]. More importantly, the experimental
time-dependent components relative to the time-independent
components are smaller than predicted by theory.

Because the phase shift of the structure factor response
relative to the external field is a strong function of the wave
vector, we relied on the fits of theK-dependent phase shift to
determine the factorl / ġ for each of the correlation lengths.
Per concentration, i.e., structure factor, the only fit parameter
wasl / ġ. The shear-rate-dependent as well as the frequency-
dependent data sets were fitted simultaneously, varying this
factor, since both parameters depend on that factor in the
same way[see Eq.(28)]. The results are plotted in Fig. 11 for
a fixed shear rate and frequency. Due to critical slowing
down, the phase shift becomes more pronounced when the
equilibrium correlation length increases. Furthermore, the
phase shift increases dramatically with decreasing wave vec-
tor K toward 0. This is the result of the fact that relaxation
times scale like,K2, which signifies the larger displace-
ments of colloidal spheres that are necessary for the relax-
ation of sinusoidal density profiles with longer wavelengths.
In order to get a good fit we had to introduce an additional
small wave-vector-independent phase shift. The origin of this
additional phase shift is as yet unclear. The fits of the phase
shift turned out to be insensitive to the values ofa and e,
which were therefore not included. The values forl / ġ vs j
obtained from the fit are plotted in Fig. 6. From the oscilla-
tory flow experiments it is thus found that the exponent in
thej dependence ofl / ġ is equal to 4 to within experimental
error (the slope is 3.7±0.4), in accordance with theory and
the scattering experiments under stationary flow.

In Fig. 9(a), time traces of the normalized responseuDSu
are plotted for fixed frequency and wave vector, butvarying
the maximum shear rate. In this case the normalization is
performed with respect to the maximum value ofDS as
found for the highest maximum shear rate. When increasing
the shear rate for a fixed frequency, the response becomes
increasingly nonlinear. The degree of nonlinearity is mea-

FIG. 9. The normalized responses of the structure factoruDSu of
a near-critical colloidal dispersion with equilibrium correlation
lengthj=945 nm to oscillatory shear flow in the time domain(left)
and frequency domain(right), for v=2p0.025 s−1. The dimension-
less wave vector here is equal toK =s1.4,0,0d. The symbols rep-
resent experimental data, while solid lines indicate the theoretical
prediction, usingl / ġ=0.6. Both experimental data and theory are
normalized with respect to the response of the highest shear rate.
The dashed line represents the applied field.
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sured by the appearance of higher order harmonics in the
frequency domain of the response, as depicted in Fig. 9(b).
Comparing the amplitudes of the harmonics for the different
shear rates, we see that the fourth order harmonic appears
when doubling the maximum shear rate fromġ0
=0.29 s−1 to ġ0=0.77 s−1. When the maximum shear rate is
doubled once again toġ0=1.43 s−1, also the sixth order har-
monic of the response becomes significant. The fit to the
theory reproduces this increasing nonlinearity with increas-
ing shear rate. From the Fourier analysis also the phase shift
of the microstructural response with respect to the applied
field is obtained. The phase shift decreases fromw

=1.78 rad forġ0=0.29 s−1, to w=0.47 rad forġ0=0.77 s−1,
andw=−0.33 rad forġ0=1.43 s−1.

Varying the frequencyat a fixed shear rate one expects
two phenomena to occur. First, one expects the imaginary
component to grow and the real component to diminish with
increasing frequency. Second, one expects the degree of non-
linearity to decrease with increasing frequency.

Both phenomena can be observed in Fig. 12, where cuts
are shown of the real and imaginary components of the struc-
ture factor atK3=0. The peak values of the real component
decrease and move outward while the peak values of the
imaginary components increase and move inward with in-

FIG. 10. The various Fourier
components of the shear-distorted
structure factor for experiment(a)
to (e) and theory(f) to (j). The ex-
perimental data were taken for
ġ0=0.68 s−1 and v=2p0.05 s−1,
with j=945 nm. The correspond-
ing theoretical values are calcu-
lated usingl / ġ=0.6.
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creasing frequency, for both the second and fourth harmonic.
When plotting the wave-vector-dependent phase shift(see
Fig. 13), an increasing time lag is observed with increasing
frequency. This implies that for increasing frequency an in-
creasing amount of energy is stored at small wave vectors of
the critical structure, instead of distorting the critical struc-
ture. The theoretical predictions are qualitatively confirmed
by the experiments, though the fourth harmonic data are
quite noisy.

In order to compare the experimental values forDS with
theory, the experimental data are scaled with a constant to fit
the theoretical prediction. Interestingly, this constant, and
therefore the mismatch with theory, decreases with increas-
ing frequency, from 4.5 to 2, so that the quality of the fit
improves with increasing frequency. Apart from the scaling,
also the positions of the maxima inDSsK d do not quantita-
tively agree with the theoretical predictions. It is striking to
see that for the second harmonic the maxima of the second
harmonic for the experiment occur at largerK1 values as
predicted by theory, whereas for the fourth harmonic they
occur at smallerK1 values, even within the experimental
beam stop. Also the maxima of the imaginary components
are found at very smallK values, within the region covered
by the beam stop. The phase shifts, however, are correctly
predicted by theory(see Fig. 13), showing that the time-
dependent behavior is recovered by the theory.

V. SUMMARY AND DISCUSSION

The aim of this work is to gain microscopic understanding
of the behavior of near-critical suspensions under shear flow.
We tested the theory for the evolution of the probability den-
sity function under shear, by measuringin situ the shear-
distorted microstructure of colloid-polymer dispersions.

Understationary shear flow, an unexpected shear-induced
distortion of near-critical microstructural order in directions
perpendicular to the flow direction was observed. A quanti-
tative explanation for the experimentally observed distortion

of long-ranged correlations is only feasible when the distor-
tion of short-ranged correlations is properly taken into ac-
count in theory. Scattering patterns in the flow-vorticity
plane and turbidity for a whole set of equilibrium correlation
lengths(that is, the distance to the critical point before shear-
ing) and shear rates could be quantitatively described in
terms of just three independent fitting parameters: one pa-
rameter describing the susceptibility of the long-ranged
correlations and two parameters describing the susceptibility

FIG. 12. Frequency dependence of the shear-distorted structure
factor for j=945 nm and a fixed shear rateġ0=0.8±0.1 s−1, with
K3=0. Plotted are the amplitudes of the second and fourth harmon-
ics of the real(top) and imaginary(bottom) parts of the response.
The solid symbols represent the second component and the open
symbols represent the fourth component of the experimental re-
sponse, for v=2p0.025 s−1 (m), v=2p0.05 s−1 (P), and v
=2p0.1 s−1 (j). The solid and dashed lines indicate the theoretical
predictions of the second and fourth components, respectively, us-
ing l / ġ=0.6 to calculateV. The experimental data are multiplied
by a factor 4.5 forv=2p0.025 s−1, 3.0 for v=2p0.05 s−1, and 2.0
for v=2p0.1 s−1.

FIG. 13. Frequency dependence of the phase shift for a fixed
shear ratesġ0=0.8±0.1 s−1d with K3=0: v=2p0.025 s−1 (h), v
=2p0.05 s−1 (s), v=2p0.1 s−1 (n). The lines indicate the theoret-
ical prediction, usingl / ġ=0.6 to calculateV.

FIG. 11. TheK1 dependence of the phase shift for several cor-
relation lengths forv=2p0.5 s−1 and ġmax=1.0 s−1. The symbols
are experimental data, and the lines are fits with respect to the
proportionality constantl / ġ, which is the only fit parameter. The
results of the fit are plotted in Fig. 6, and are seen to coincide with
values obtained from stationary shear experiments.
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of the short-ranged correlations. The shear-rate and
equilibrium-correlation-length dependence of these param-
eters is found to be in accordance with theory.

On first thought one might reason that short-ranged dis-
tortions are unimportant when probing the much more sus-
ceptible long-ranged, near-critical correlations. It is shown,
however, that close to the critical point such distortions of
short-ranged correlations do play an important role. The
structure factor is of the Ornstein-Zernike form in directions
perpendicular to the flow direction, which allows one to de-
fine a shear-rate-dependent correlation length. By probing
the structure factor in the flow direction we observe that the
correlation length is always smaller than the correlation
length without shear flow. This is a proof of ashear-induced
displacement of the critical point. The fact that the data for
stationary shear can be fitted by assuming a distortion of the
short-ranged correlations confirms the theoretical prediction
that a shear-induced displacement of the critical point is con-
nected to distortions of short-ranged correlations[42].

Short-ranged correlations are less important when ex-
plaining experimental scattering data underoscillatory flow,
probably due to the fact that short-ranged microstructural
order instantaneously follows the imposed shear flow. For a
(semi)quantitative comparison of the data to theory we had
to introduce, however, an unexplained additional phase shift
to the temporal response of the near-critical structure factor,
and we had to normalize scattered intensities. The theory

then explains experimental results on a(semi)quantitative
level: all the characteristic features of oscillatory shear-
induced microstructural order as a function of shear rate,
maximum strain amplitude, frequency, and equilibrium cor-
relation length, are explained by our theory using the dressed
Peclet number as a single fit parameter.

The description of shear-induced short-ranged correla-
tions has been done in a semiempirical manner. In particular,
the nonanalytic shear-rate dependence that we need to ex-
plain the experiments is not yet understood. Probably there is
a coupling of the nonlinear response of long-ranged correla-
tions and the response of short-ranged distortions. A combi-
nation of light scattering(to probe long-ranged distortions)
and x-ray scattering(to probe short-ranged distortions[8])
on the same system may give insight into the origin of the
nonanalytic shear-rate dependence of short-ranged correla-
tions close to the critical point. To confirm that our theory
indeed predicts viscoelastic behavior of near-critical disper-
sions correctly, we need to perform Fourier-transform rheol-
ogy, which is suitable to study nonlinear behavior of such
dispersions[50].
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